Exercise 57

Find an equation of the tangent to the curve at the given point.

$$
y=4 \sin ^{2} x, \quad(\pi / 6,1)
$$

Solution

The aim is to find the slope of the tangent line at $x=\pi / 6$. Take the derivative of y.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(4 \sin ^{2} x\right) \\
& =4 \frac{d}{d x}(\sin x)^{2} \\
& =4(2)(\sin x)^{1} \cdot \frac{d}{d x}(\sin x) \\
& =4(2) \sin x \cdot(\cos x) \\
& =4(2 \sin x \cos x) \\
& =4 \sin 2 x
\end{aligned}
$$

Plug in $x=\pi / 6$.

$$
y^{\prime}\left(\frac{\pi}{6}\right)=4 \sin \frac{\pi}{3}=4\left(\frac{\sqrt{3}}{2}\right)=2 \sqrt{3}
$$

Use the point-slope formula with this slope and the given point $(\pi / 6,1)$ to get the equation of the tangent line.

$$
\begin{aligned}
& y-1=2 \sqrt{3}\left(x-\frac{\pi}{6}\right) \\
& y-1=2 \sqrt{3} x-\frac{\pi \sqrt{3}}{3} \\
& y=2 \sqrt{3} x-\frac{\pi \sqrt{3}}{3}+1
\end{aligned}
$$

Below is a graph of the curve and its tangent line at $(\pi / 6,1)$.

